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Are We Solving the Equations Right? (Verification)

• Accuracy

• Stability

• Efficiency: Model Order Reduction (Lecture 2)

Simulation Models

Physics, Chemistry,

Mechanics, Biology,

Materials

Mathematical 

Models

Computational 

Methods

Are We Solving the Right Equations? (Validation)

• Physical models

• Materials models

• Data-Driven (Machine Learning) (Lecture 3)

Lab 1: Convolutional Neural Network (CNN) for crack detection 



Generic parameterized mechanical problem

Model Order Reduction (MOR) for Parameterized Systems

( , , ; ) 0,   ,  )(d p tu inpu parameterst =  x x 

( , , ; ) 0,   u t = x x
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Physical model
Data-driven

IBVP:

BC:



Proper Orthogonal Decomposition (POD)
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Karhunen 1946; Loeve 1955; Sirovich 1987; Jolliffe 2002

Minimization of reconstruction error:

▪ Related to Principal component analysis (PCA) & SVD:

✓ a priori Error Estimate:
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▪ Offline data collection:
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High-dimensional model
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Fracture in Engineering Problems
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Hepatic surgery 
(H. Courtecuisse, J. Allard, P. Kerfriden et al. 2014) 

Simulating damage initiation and subsequent global structural failure is one of the 

most active topics

Concrete Cracks

However, a primary challenge of applying MOR for fracture is how to represent the 

local nature of discontinuities and singularities in the low-dimensional subspaces

• Hybrid methods full-order/Reduced-order based on domain decomposition (Galland et al. 2011; 

Kerfriden et al. 2012, 2013)

• Local-global method (Niroomandi et al. 2012)

Existing methods

goal: physics-preserving ROM



Proposed MOR for Fracture Mechanics
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Solution decomposition
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  u
h :  smooth solution

  û
h :  non-smooth solution

Chen, J. S., Marodon, C. and Hu, H. Y., “Model Order Reduction for Meshfree Solution of Poisson Singularity Problems,” IJNME, Vol. 

102, pp. 1211–1237, 2015.

Integrated Singular Boundary Function Method (ISBFM)
[Olson et al., 1991; Georgiou et al., 1996]
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Physics-preserving decomposed reduction projection

𝐝𝑟 = 𝐏𝜶, 𝐝𝑟∈ ℝ𝑁, 𝜶 ∈ ℝ𝑘 , 𝑘 ≪ 𝑁

ISBFM Galerkin formulation ➢ Low-order quadrature

➢ Sparse system



▪ Linear elastic fracture mechanics (LEFM)

Liu, Jun, Zhang, Int. J. Numer. Meth. Engng. 1995 

Chen, Pan, Wu, Liu, Comput. Methods Appl. Mech. Engrg. 1996

Belytschko, Krongauz, Organ et al, Comput. Methods Appl. Mech. Engrg. 1996
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▪ Reproducing Kernel Particle Method (RKPM)
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✓ Naturally capture jump across crack

Fine-Scale Fracture Model
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Near-tip Enrichment Basis Function
9

The enrichment basis functions derived from William’s solution (William 1952) are 

composed of symmetric and anti-symmetric components to the crack surface
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He, Q., Chen, J. S, Marodon, C., “A Decomposed Subspace Reduction for Fracture Mechanics based on the Meshfree Integrated 

Singular Basis Function Method”, Computational Mechanics, Vol. 63, pp. 593–614, 2019.



Standard Galerkin formulations 

Galerkin weak form
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Standard Galerkin Weak From
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ISBFM-Galerkin formulations 

Integrated Singular Boundary Function Method (ISBFM) 
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➢ Non-smooth enrichment functions 

simply appear on boundaries away 

from the crack tip

➢ Avoid taking high-order domain 

quadrature while capturing the 

singularity

➢ Sparse coupling sub-matrix
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ISBFM Galerkin Weak From
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Crack-beam (Motz’s) Problem (𝛼 = 0.5)

▪ Singularities are well captured

▪ Optimal convergence is restored

  u = 0   ¶u / ¶y = 0

  ¶u / ¶x = 0   ¶u / ¶x = 0

  u = 0.125
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Convergence Test for Problem with Singularity 12
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Error measurement:

Loaded line crack model
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ISBFM-Galerkin method improves more than 2 orders of accuracy while using much 

less quadrature points in fine-scale modeling. 

Computational burden reduction

  N̂ :  number of non-smooth enrichment basis

Comparison of Standard and ISBFM Galerkin Methods
14



Decomposed Subspace Reduction Method 15

Discretized by the enriched meshfree approxiamtion, the ISBFM Galerkin formulation

results in a full-scale discrete system of dimension                             (2D problem)  N = 2(N + N̂ )

Full-scale model

Reduced-order approximation 𝐝𝑟 = 𝐏𝜶, 𝜶 ∈ ℝ𝑘 , 𝑘 ≪ 𝑁

1
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P 0
P

0 P

Decomposed projection

▪ Sparse sub-matrix due to ISBFM-Garlerkin

▪ a low-rank representation that only reduces the smooth system and well 

preserves non-smooth subspace

DSR-ROM (             )

Modal analysis-ROM

𝐏𝑇𝐊𝐏𝛂 = 𝐏𝑇𝐟

𝐏 = 𝐈

He, Q., Chen, J. S, Marodon, C., “A Decomposed Subspace Reduction for Fracture Mechanics based on the Meshfree Integrated 

Singular Basis Function Method”, Computational Mechanics, Vol. 63, pp. 593–614, 2019.



Reduced-Order Displacement Approximations

▪ Line crack model: MA (Modal analysis) v.s. DSR (Decomposed subspace reduction )

Reference (FSM)

ISBFM-MA (non-scaled) ISBFM-MA (scaled) ISBFM-DSR

/2 /2

/2
( ) ( ),  50

1

c

J J

J J JJ
r

l
r 



 = = =F F F

▪ Proper scaling

𝑁 = 1154 1152 + 2

𝑘 = 40,
𝑘

𝑁
≈ 3.5%



Relative Error for Reduced-Order Approximations

36 36 ( 1296) =N
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❖ MA Reduction ❖ DSR Reduction

Euclidian norm of the

reduced-order solution

against the fine-scale

solution

( ) | ( ) ( ) |= −x u x u xh r

Ee

▪ Reduced-order modeling under different order of enrichment functions ˆ 1,2,5=N



Reduced-Order Modeling of Loaded Crack Problem 

( 49.65, )=y x yu ❖ DSR Reduction for discontinuity 

▪ Approximation of near-tip features under different reduction ratio /  ( 20,80,160)=k N k

( 50.35, )


=


yu
x y

y

❖ DSR Reduction for near-tip singularity



Reduced-Order Modeling of Mixed-Mode Problem

▪ Reduced-order modeling under different percentages of reduction /  ( 20,80,160)=k N k

▪ Stress intensity factors by DSR reduced order modeling

(Fleming, Chu, Moran, Belytschko 1997)

Converge to
full-order solution



Nonlinear Model Reduction (Hyper-Reduction)

POD-Galerkin

“Lifting-bottleneck”

• The nonlinear term is a function of the unknown (cannot precomputed)

• The online computational cost scales with the underlying discretization

20

Nonlinear function w.r.t. state

POD approximation of nonlinear terms (internal force vector, residual vector, etc.)

▪ Nonlinear snapshots :

int ( ( )) ( ) ( ( )),= +f u Au u μfμ μ

int ext( ( )) ( ) ,T r T− = 0V f V μu V fμ

System Approximation

Collateral POD basis:

Attemp: POD approximation

Kaneko, S., Wei, H., He, Q., Chen, J. S. and Yoshimura, S., “A Hyper-reduction Computational Method for Accelerated 

Modeling of Thermal Cycling-Induced Plastic Deformations,” Journal of the Mechanics and Physics of Solids, Vol. 151, 

104385, 2021. https://doi.org/10.1016/j.jmps.2021.104385



“Gappy”-type interpolation method [Everson and Sirovich 1995] 

Barrault et al. 2004, Chaturantabut and Sorensen, 2010, Carlberg et al. 2011

DEIM approximation

21

Discrete empirical interpolation method (DEIM) 

“Gappy”-POD

Greedy Algorithm: determine the selection matrix       based on the empirical bases 𝒁

Sample a few entries using selection matrix

[0,...,0,1,0,...,0]T n

ie = 



Greedy Algorithm 22

Chaturantabut and Sorensen, 2010

Idea: The DEIM algorithm selects an index (DOF of the discretization) at each 
iteration to limit growth of an error bound. 

❑ Error bound

where and



II. MOR / Robust Nonlinear MOR via Manifold Learning 23
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2D Nonlinear Parameterized Function

W = [0,1]2The nonlinear function in is discretized by                    equidistant grid and 

sampled on a equidistant grid in parameter domain 
n = 20´ 20

N
s
= 25´ 25

Normalized singular value
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POD modes



2D Nonlinear Parameterized Function

II. MOR / Robust Nonlinear MOR via Manifold Learning 24

12 DEIM points selected by greedy algorithm
“sensor”

Average L2 error of POD and DEIM
approximation for the training data

ˆ ˆ/ 3% ( 12)k k =
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Two-Phase Hyperelastic Material

Mat. 1 (White) Mat. 2(Blue)

E 3.0e7 1.5e6

v 0.49 0.4
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Two-Phase Hyperelastic Material
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Robust Nonlinear MOR via Manifold Learning
27

Full-order model ( ) , 0,Au+ f u =

POD ROM ( ) .,T r T r+ = 0V AVu V f Vu

POD-DEIM ROM † ,ˆ ( )T r T T r+ = 0V AVu V ZZ P f Vu

POD Approx. (Recon.)

DEIM Approx.

Collect state vectors in offline stage

Collect both state and nonlinear vectors offline

Nonlinear Model Order Reduction

෩𝑿𝑠 = 𝑽𝑽𝑻𝑿𝑠



Limitations of POD based DEIM

• POD method only works well for data that is Gaussian or lying on a “flat” manifold. It 

is very sensitive to outliers that does not follow the overall statistical model.

• Knowing that the manifold of  the snapshots       of nonlinear function is much more 

“nonlinear” than that of the state snapshots       , can we design a better projection      

than that obtained from POD ?

𝑿𝑓

𝑿𝑠 Z

Multi-Gaussian
(Coifman & Lafon 2006)

Objective: a more robust ROM dealing with mechanics systems that exhibit a 
wide variety of parameter-dependent nonlinear behaviors

28



Manifold Learning (Nonlinear Dimensionality Reduction)

▪ Manifold learning to find the low-dimensional representation

Given data that lie in a non-Euclidean space, find an embedding 

into Euclidean space that preserves as much of the geometry as 

possible

▪ S-Curve example

(a) Two-dimensional manifold 
structure represented by the three-
dimensional S-curve data set 

(b) Two-dimensional 
embedding obtained 
by PCA/POD

(c) Two-dimensional 
embedding obtained 
by manifold learning

29

Q. He, J. S. Chen “A Physics-Constrained Data-Driven Approach Based on Locally Convex Reconstruction for Noisy Database,” CMAME,
363, 112791, 2020



Manifold Learning: Graph Embedding

Belkin and Niyogi, 2002; Yan et al. 2005

“Spectral Graph Theory” [Chung 1997]

• Solve minimization problem (Hall’s energy [Koren et al. 2002])

Intepretation: preserves the locality of data in embedding graph1{ }N

i i=x

where ,  and  is a user-defined similarity matrix that better represents

the nonlinear structure of input data

=L D- W W

30

k-NN
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Linear Graph Embedding (LGE) Framework

T=Y Z X

▪ Link to POD (or Principal component analysis)

31

▪ Assume linear mapping , we derive the projection from

2
*

LGE

,

arg min arg max trace( ),
T T

N
T T T

i

T

j i j

i j

w
= =

= − =
I IZ Z Z Z

Z Z x Z x Z XLX Z

▪ Some optional choices of weight function

*

PCA arg max trace( ),
T

TT

=

=
IZ Z

Z XHZ X Z
2

*

PCA .
1

arg min
T

N
T T

i j

i j N
=

= −
IZ Z

Z Z x Z x

• Inverse distance weight

✓ POD is a special case of LGE with uniform weights

✓ LGE provides a general framework (locality and weights) to consider a priori

knowledge of data to enhance the resulting reduced-order projection

Observations

Belkin and Niyogi, 2002; Yan et al. 2005

1
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w dist
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=x x
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2
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2
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w dist


= −

x x
x x• Gaussian weight

1
mean operatorT

N
= − =I 11H



Example: POD vs. LGE Projection

(a) original data (b) POD reconstruction (c) LGE reconstruction

Remarks:

1. One drawback of the POD learning methods is that it is based on least squares estimation

techniques and known for its extreme sensitivity to “outliers”

2. A “robust” learning method is the one that can tolerate some percentage of outlying data 

without having the solution severely skewed from the desired solution.

3. It motives the development of LGE to improve the outlier robustness, which better preserves 

the nonlinear data structure.

23.57 10r
−=  23.09 10r

−= 

32



Thermal fatigue of solder joints

Main reason of failure

→thermal fatigue

→Mismatch of thermal expansion 

induces thermal stress in solder 

joints

Fatigue analysis : estimation of numbers of loading cycles to failure, 𝑁𝑓

The first procedure is time consuming

- Model solder joints as nonlinear material (Visco-plastic)

- 3D large-scale simulations for many thermal cycles

Employment of reduced-order modeling (ROM) with Hyper Reduction techniques to 

enhance efficiency

Typical model of 

IC package [2]

IC package [1] Crack path [2]

1. Numerical simulation

2. Stress/strain calculation

3. Estimate 𝑁𝑓

Relation is defined

by a fatigue model 

Standard procedures

Q. He, J. S. Chen “A Physics-Constrained Data-Driven Approach Based on Locally Convex Reconstruction for Noisy Database,” CMAME, 363, 
112791, 2020



Example of fatigue analysis with ROM techniques

RKPM node distribution

Integration cell

Nodal distribution

-number of nodes 7,419

Integration cell

-number of cells 7,159

-- 2,738 in silicon

-- 2,231 in SnAgCu solder balls

-- 2,190 in FR4

Flip chip assembly

Essential boundary condition

-AB … 𝑢𝑦 = 0

-AC and DE … 𝑢𝑥 = 0

7



Problem Statement

Dwell time is 15 min

Ramp rate is 11 oC/min

The time step size is 180 s

1st Cycle (20 timesteps, 0 ~ 3,600 s)

1)For collecting snapshot matrices 𝐗𝑠 and 𝐗𝑄, we run high-fidelity analysis 

for the 1st thermal cycle (0 s ~ 3,600 s, 20 timesteps).

2)Apply SVD to 𝐗𝑠 and 𝐗𝑄 and select the first 𝑘 and 𝑙 basis from left 

singular vectors, we obtain 𝐕𝑘 and 𝐙𝑙
In this study, 𝑘 = 6, 𝑙 = 30
3)Define index matrix 𝐏D ∈ ℝ𝑛×𝑚 by using greedy algorithm

In this study, the number of the selected DOFs 𝑚 = 60

For comparison, we run high-fidelity analysis, POD-Galerkin-based analysis, and 

Gappy-POD-based analysis for the 5 cycles (0 s ~ 18,000 s, 100 timesteps)
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Visualization of the selected DoFs

In this study, 𝑚 = 60, so 60 components are chosen in Gappy-POD procedure

→ During the non-linear N-R iteration, we do not need to perform domain 

integration over the entire domain (2,231 cells) 

→Dark gray cells (131 cells) are used to evaluate the non-linear internal force and 

tangent stiffness
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Ball A Ball B Ball C Ball D

blue points represent nodes for which x-component of 𝑸𝑁𝐿 is evaluated

green points represent nodes for which y-component of 𝑸𝑁𝐿 is evaluated 

red points represent nodes for which both x- and y-components of 𝑸𝑁𝐿 are evaluated



Verification
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High-fidelity POD Galerkin

Hyper-reduction

Comparison of shear stress



Lifetime estimation

High-fidelity POD-Galerkin Hyper-reduction

1,198 1,200 1,206

Unit : cycle
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Based on Δ𝑊 during the 5-th cycle, lifetime 𝑁𝑓 is estimated  

1st cycle 2nd cycle

3rd cycle 4th cycle 5th cycle

High-fidelity : 0.3238 MPa

POD-Galerkin : 0.3236 MPa

Hyper-reduction : 0.3231 MPa

Δ𝑊 during the 

5-th cycle

Darveaux model (Darveaux, R., 2002, Basit, M et al., 2015): Lifetime 𝑁𝑓 is estimated by 

the increment of inelastic strain energy density during one cycle at critical area.
Critical area Ω𝑐𝑟 : Crack will initiate here



Computational Efficiency

(i) computing 𝑱 and 𝑸𝑁𝐿 (in Gappy-POD, 𝐏D
T𝑱 and 𝐏D

T𝑸𝑁𝐿),

(ii) matrix and vector operation

(iii) solving the algebraic equations

In Newton-Raphson loop, the following 3 procedures are time consuming

𝐕𝑘
T𝑱 𝑖 𝐕𝑘

The number of equations 

6 << 14,838 (much less than the original total DOF)
Due to 𝐏D

CPU time per iteration 

Unit: s
Unit: s

(i) (ii) (iii)

Total 

iteration 

number

Total CPU time

High-fidelity 0.16 0.0016 0.12 489 134.67

POD-Galerkin 0.17 0.18 0.00059 480 167.02

Hyper reduction 0.0039 0.0027 0.00037 486 3.53



Physics-preserving Model Order Reduction (MOR) for fracture mechanics

and nonlinear materials

▪ Integrated Singular Basis Function Method (ISBFM) is used to allow low

order domain integration and yield a sparser discrete system

▪ A Decomposed Subspace Reduction (DSR) method is developed to

preserve the near-tip singularity and discontinuities in the low-dimensional

reduced model for the cracked region

▪ A robust reduced-order model for parameterized nonlinear systems

characterized by a wide variety of nonlinear behaviors in terms of

parameter changes.

▪ Manifold learning for a given data that lie in a non-Euclidean space finds

an embedding into Euclidean space with maximal geometry preservation.

▪ A linear graph projection (LGP) based on the Graph-embedding

framework that is a general framework to construct reduced order basis.

▪ By using the LGP with localized weighted relationship between pair-wise

data points leads to a robust reduced order model (insensitive to outliers);

whereas the POD is easily mislead by certain faraway data and ignoring

the whole data structure.

▪ Reduced-order modeling (ROM) with Hyper Reduction techniques is

effective to enhance efficiency in nonlinear materials modeling.

Summary 40


