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What is learning?

“Learning is any process by which a
entity improves performance from
experience.” - Herbert Simon

Example — The ability to deduce F=ma by
observing the trajectory of the apple falling
from the tree.

What is machine learning?

Machine Learning is the study of algorithms
that

 improve their performance P

« at some tasks T

 with experience E.

A well-defined learning task is given by

<P, T, E>.




Why Machine Learning?

Automating automation

Getting computers to program themselves
Writing software could be the bottleneck
Let the data do the work instead!
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Promises?

* “A breakthrough in machine learning would be worth
ten Microsofts” (Bill Gates, Chairman, Microsoft)

« “Machine learning is the next Internet”
(Tony Tether, Director, DARPA)

« Machine learning is the hot new thing”
(John Hennessy, President, Stanford)

« “Machine learning is going to result in a real revolution” (Greg
Papadopoulos, CTO, Sun)

BUT

= Elon Musk & v
@elonmusk

If you're not concerned about Al safety, you should be.
Vastly more risk than North Korea.



Hype?

Gartner Hype Cycle for
Artificial Intelligence, 2019
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Traditional Programming
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Example: Rock Scissors Paper Game

Traditional Approach — explicitly
programming the rules

switch (action)

{
case “rock” :
reaction = “paper’; break;
case “scissors”:
reaction = “rock”; break;
default:
reaction = “scissors’
}

ML Approach — implicitly "learning” the
rules from the patterns

Given: History of game played, e.g.
Game 1: Input = rock-scissors, output = loss
Game 2: Input = scissors-paper, output = loss
Game 3: Input = rock-paper, output = win

...etc

Computer then "training” the Al by providing
the data to the Al

Al learns the “rule” and make predictions

The key difference is that the rule has never
been explicitly programmed



Example: “Seeing that” vs. “seeing as”

Rationale of Predictions: External behaviors vs. internal
properties

Canard Digérateur (1741) Duck-rabbit (1892)



ML in a Nutshell

* Every machine learning algorithm has
three components:

— Representation
— Evaluation
— Optimization
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Example: Data Representation

Consider descriptors of data as the ingredients for theory
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Example for civil engineering and engineering mechanics
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Evaluation

Accuracy

Precision and recall
Squared error
Likelihood

Posterior probability
Cost / Utility

Margin

Entropy

K-L divergence

Etc.
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Optimization

« Combinatorial optimization
— E.g.: Greedy search

« Convex optimization
— E.g.: Gradient descent

« Constrained optimization
— E.g.: Linear programming
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Combinatorial Optimization

 How to determine elements of a set or n-
tuple that maximize an objective function?

15



Convex and constrained
Optimization

 How to a point in a parametric space that maximize
one or multiple objective functions?
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Major branches of machine
learning

Supervised learning
— Rule induction from input/output pairs
— Learn with labeled data

Unsupervised learning
— Dimensional reduction
— Data compression

— No output required

Reinforcement learning

— Markov decision process

— Agent interact with environment

— Need reward from environment influence actions
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Supervised Learning

* Given examples of a
function (X, F(X))

* Predict function F(X) for
new examples X
— Discrete F(X):
Classification

— Continuous F(X): R

Regression o
. Example: Classification Problems?
— F(X) = Probability(X): Input; pictures of dogs and cats

Probability estimation Outpiut: The label “dog” or “cat”
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Reinforcement learning and Game

Go Game
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Applications in Engineering

* Transportation Engineering
* Engineering Mechanics

» Topological optimization

* Predictive modeling

» Architecture materials

And countless more ....

21



